Interpolation with Cumulative Chord Cubics

نویسندگان

  • Ryszard Kozera
  • Lyle Noakes
چکیده

Cumulative chord C piecewise-cubics, for unparameterized data from regular curves in R , are constructed as follows. In the first step derivatives at given ordered interpolation points are estimated from ordinary (non-C) cumulative chord piecewise-cubics. Then Hermite interpolation is used to generate a C piecewise-cubic interpolant. Theoretical estimates of orders of approximation are established, and their sharpness verified through numerical experiments. Good performance of the interpolant is also confirmed experimentally on sparse data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics for Length and Trajectory from Cumulative Chord Piecewise-Quartics

We discuss the problem of estimating the trajectory of a regular curve γ : [0, T ] → R and its length d(γ) from an ordered sample of interpolation points Qm = {γ(t0), γ(t1), . . . , γ(tm)}, with tabular points t′is unknown, coined as interpolation of unparameterized data. The respective convergence orders for estimating γ and d(γ) with cumulative chord piecewise-quartics are established for dif...

متن کامل

Cumulative Chords, Piecewise-quadratics and Piecewise-cubics

Cumulative chord piecewise-quadratics and piecewise-cubics are examined in detail, and compared with other low degree interpolants for unparameterized data from regular curves in , especially piecewise-4-point quadratics. Orders of approximation are calculated and compared with numerical experiments. Good performance of the interpolant is also confirmed experimentally on sparse data. This work ...

متن کامل

G1 Hermite interpolation by Minkowski Pythagorean hodograph cubics

As observed by Choi et al. (1999), curves in Minkowski space R2,1 are very well suited to describe the medial axis transform (MAT) of a planar domain, and Minkowski Pythagorean hodograph (MPH) curves correspond to domains, where both the boundaries and their offsets are rational curves (Moon, 1999). Based on these earlier results, we give a thorough discussion of G1 Hermite interpolation by MPH...

متن کامل

Choosing nodes in parametric curve interpolation

Perhaps a few words might be inserted here to avoid In parametric curve interpolation, the choice of the any possible confusion. In the usual function interpolation interpolating nodes makes a great deal of difference in the resulting curve. Uniform parametrization is generally setting, the problem is of the form P~ = (x, y~) where the x~ are increasing, and one seeks a real-valued unsatisfacto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001